
AD-A098 225 YALE UNIV NEW HAVEN CT DEPT OF COMPUTER SCIENCE F/6 12/1

FEB 81 S C EISENSTAT, M N SCHULTZ N00014-76-C 0277
UNCLASSIFIE 1D TR-19'4/A1 NL

7. flf5 NSMETEDS LfLIPIfOLEMfSlVfl flflf
EEEEED]i

I3 2

11L -- H .8

111I 1 1.

LEVEW,

Contract N0001l-76-C-0277

C)DUTBUT'ON STATE) A

Appiroved for pv lic rele.8;
p Distribution Uii nfitedu

YALE UNIVERSITY
S DEPARTMENT OF COMPUTER SCIENCE

81 4 6 202 I

DTIC
.APR 2 7 1991

/ / ---

ON SOME TRENDS IN ELLIPTIC PROBLEM SOLVERS.

P%(S C. IUSTAT A H'. I.ACILTZ

TECHNICAL REPORT #194/81

This york vas *u)orted in part by the U.S. Office of Naval Research
under GbnjP 14-?6-C-0bit 4

pp,,,, i .

LI

1. Introduction

- Elliptic boundary value problems are at the core of many

systems of partial differential equations occurring in mechanics.

Examples of applications include fluid dynamics, semiconductor

device modelling, and structural analysis. In addition, they often

appear as a result of applying an implicit difference approximation

to the time derivative in a parabolic problem. 1 Thus, it is

important to have efficient and robust elliptic problem solvers. -.

Moreover, we expect that many of the issues faced in the development

of such solvers are typical of those to be faced in the development

of large-scale scientific problem solvers.

The development of high-technology elliptic problem solvers

must include serious consideration of algorithms, architecture, and t o . .•
applied mathematics, each traditionally the subject of an entire Uhanghl.yd

discipline. Recent and expected advances in algorithm and hardware

technologies strongly suggest the possibility of both dramatically p- I

reducing the cost and dramatically increasing the scope of A

scientific computational modelling. But an integrated highlyL

interdisciplinary approach will be necessary to realize this

possibility.
--

Success in the development of high-technology elliptic problem

solvers will significantly increase the effectiveness and

productivity of engineers and scientists by decreasing the cost of

their computing, by increasing the efficiency with which they can

use the computer, and by allowing them to solve increasingly more

2

complex problems, which are computationally intractable on even the

fastest machines available today.

In this paper we discuss some of the issues involved in the

design of a high-technology elliptic problem solver. In particular,

we will concentrate our attention on the design of a modular,

heterogeneous multi-processor elliptic problem solver consisting of

a host computer and one or more peripheral processors. Z<-

We wish to acknowledge the help of our current and former

students and colleagues in the Department of Computer Science of

Yale University in developing the ideas presented here. In

particular, our colleague Josh Fisher played a key role in

formulating the ideas in the Architecture section of this paper.

2. Architecture

We propose a high-technology elliptic problem solver

consisting of a heterogeneous multi-processor computer system. This

system would have a host machine (such as a minicomputer with a

32-bit word length and an operating system supporting virtual

memory) and one or more highly optimized peripheral processors. An

important practical advantage to this type of architecture is the

fact that one does not have to design a complete hardware-software

system to gain great computational power.

Commercial high-performance, progrmmable peripheral

processors, which we will refer to hereafter as attached processors,

have become quite popular for signal processing. These processors

31

feature tailored scientific instruction sets, direct user

microprogrianing, and very wide instruction words. This provides

potentially very large speed-ups, but makes the processors extremely

difficult to code for efficient performance. Clearly, programming

tools such as optimizing FORTRAN compilers are a critical need if

the use of these devices is to become commonplace. It seems quite

likely that for the next five years such attached processors will

provide a very attractive architecture for rapid and cost-effective

scientific computation.

The value of dual-processor systems involving a

general-purpose host and an attached processor for solving elliptic

problems has yet to be convincingly demonstrated. Little is known

about many fundamental issues. Perhaps the most critical is the

identification of which key subalgorithms attached processors can do

sufficiently well to insure that the cost of moving the data

describing the problem does not overwhelm the gain obtained.

Indeed, short of moving the entire problem to the attached

processor, which may not be feasible because of progrming and

memory considerations, it is not a priori clear that such

subalgorithms exist. If this multi-processor approach is to be

successful, the host machine must be capable of supporting

peripheral processors via a very fast specialized bus, rather than a

slow general-purpose communications bus.

In thinking about the architecture of an elliptic problem

solver, we should look beyond current comercial attached

I

4

processors. VLSI-based peripheral processors, which provide

extremely fast cycle time because of high density, the potential for

specification of highly concurrent calculations, very low cost, and

easy design with automated design tools, may turn out to be

revolutionary.

In combination, these attractions will allow us to fabricate

special-purpose processors with the potential for massively reducing

computation time. Furthermore, they introduce the possibility of

moving many of the complexities of large scientific software systems

into hardware and in this way drastically reducing the cost of

scientific programming. The potential of this technology is so

great that it promises to revolutionize our concept of what is a

computationally tractable problem.

As Kung [6, 71 has emphasized, the key to cost-effective

design and performance analysis of VLSI is the underlying high-level

algorithm. In order to maximize chip density at any level of

fabrication technology, it is necessary to have an architecture that

involves simple and regular interconnections. Bence, underlying the

chip should be an efficient parallel algorithm that has simple and

regular movements of data. Moreover, to maximize the throughput of

the peripheral processor, the algorithm should use pipe-lining

techniques to overlap I/0 with computation.

Despite its extraordinary potential, VLSI design and

fabrication are still somewhat experimental. The current design

process is lengthy and chip densities of the type we need are still

5

well in the future. We believe, however, that is not too early to

begin thinking about the basic issues.

3. Algorithms

As the peripheral processors and their algorithms become

computationally more effective, we run an increasing risk that the

whole system will founder on communications. The turn-around or

vall-clock time for a given simulation will be bounded below by

communication time, the time needed to move the data between the

host and the peripheral processors.

We will focus our attention in this section of the paper on

some of the implications algorithms have for communications. We

believe that the interplay between architecture and algorithms for

such multi-processor systems, and in particular their impact on the

turn-around time for large problems, is ill understood. Much

theoretical modelling and experimentation remains to be done. Our

intent is to illustrate some of the issues.

Generally speaking, algorithms for elliptic problems at some

stage reduce to solving very large sparse linear systems. These

linear algebra subproblems have two distinct computational phases,

the assembly (i.e., the computation) of the linear systems to be

solved and the solution of the linear systems.

This leads to many questions. What is the class of algorithms

6

for assembling linear systems? What are the implications of each

assembly algorithm for computation and communication costs? What is

the class of algorithms for solving the resulting highly structured

sparse linear systems? What are the implications of each solution

algorithm for computation and communication costs? What are the

bandwidths for data flow between different levels of memory and

processors? Now much fast memory is needed to guarantee that

algorithms will be compute-bound? Which subalgorithms can and

should be implemented on attached processors? For which algorithms

should special-purpose VLSI based processors be built?

How can we reduce turn-around time? Despite what the textbooks

tell us, neither algorithms that are more efficient in arithmetic

operations nor faster peripheral processors will in themselves

automatically reduce turn-around time. The key is to do something

about I/0. In the remainder of this section, we will illustrate

four general techniques for addressing this issue:

1. Ride the I/0, i.e., overlap the I/0 as much as possible
with useful computation (under the assumption, of course,
that the computing environment supports user-controllable
parallel execution of I/0 and computation).

2. Trade I/0 off for incremental arithmetic computation
until the two are completely overlapped.

3. Use linear algebra techniques to reduce the amount of
required storage and hence the data flow.

4. Use analytic techniques to reduce the amount of required
storage and hence the data flow by, for example, using
adaptive high-order discretizations.

7

In order to illustrate these techniques, we consider the model

problem of a second-order, linear, self-adjoint elliptic boundary

value problem in the unit square. We discuss how each technique can

be used to improve turn-around time.

For the first three techniques we consider solving the

standard five-point central-difference approximation to the model

problem on a uniform nxn grid [11]. To illustrate how we might

overlap I/0 with computation in a multi-processor system, we

consider the case of a dual-processor system, a central processing

unit and an I/0 processor, with dual-ported fast primary memory and

slow secondary memory, such as a disk. We assume that the I/0

processor is user-programmable and that it can operate in parallel

with the CPU.

Suppose we wish to compute the Cholesky factorization [5] of

the model matrix, but that the mesh is arbitrarily large, i.e., the

number of mesh points, n, in each direction is arbitrarily large, so

that the band of the matrix cannot be stored in primary memory.

What can we say about communication costs and turn-around time?

Along with Jack Perry, we formulated and proved a rather startling

result [8] about "out-of-core" Cholesky factorization algorithms,

which we state informally.

Given the ratio of the speeds of the two processors, there
exists a constant M such that for all systems with at least
M words of primary memory there exists a block Cholesky
factorization algorithm and a two-processor schedule so that
the factorization is compute-bound independent of n.

It is important to observe that, in discussing software for

8

multi-processor systems, one must give not only a computational

algorithm in the classical sense for serial machines but also a

specification for the flow of data between memories and processors

and a schedule for the processors. The specific case under

discussion is particularly startling in that using larger amounts of

primary memory beyond the minimum H given by the preceding result

actually increases the turn-around time. If we assume that the band

of the matrix can fit into primary memory but is initially stored in

secondary memory, we can prove the following result [8]:

The turn-around time of the above "out-of-core" algorithm is
shorter than the turn-around time required for (1) reading
the band into primary memory and (2) doing an "in-core"
Cholesky factorization.

Many currently available computers do not allow us to control

their I/0 processors explicitly, but do have a virtual memory system

using a heuristic page replacement algorithm such as LRU (Least

Recently Used). We have been able to prove the following result

about this situation; see Perry [8] for a formal statement and proof.

Given a fixed amount of primary memory and page size, there
exists a block Cholesky factorization algorithm, independent
of n, that minimizes the number of page faults.

Despite what the operating-systems experts of several

commercial vendors claim, and despite the fact that automatic paging

may minimize the number of times the data must be moved, given the

choice between using automatic paging and scheduling the I/0,

scheduling the I/0 is bound to be more efficient in turn-around

time. The point is that automatic paging schemes do not necessarily

move the data at the right time to overlap it with useful

9

computation. Such considerations certainly should be of major

importance in designing systems for scientific computation.

The last three general techniques for minimizing turn-around

time are based on two observations: (1) Reducing storage is likely

to reduce I/0. (2) There often exists a trade-off between

solve-time and storage (or I/0 time).

To illustrate a trade-off between solve-time and storage, we

again consider the model linear system. The classical band Cholesky

factorization algorithm requires 1/2 n4 + O(n) multiplications and

n3 storage. However, along with Andrew Sherman we developed a

divide-and-conquer band elimination or minimal storage band

elimination algorithm [3] that requires 5/6 n4 + O(n3)

multiplications and (n+l)2 storage. Thus we can gain an

order-of-magnitude improvement in the required storage at the

expense of a constant-factor increase in the required work. The

reduction in primary memory occupancy is particularly dramatic.

The third general technique for reducing turn-around is to use

sophisticated linear algebra methods. This is a place where more

classical kinds of numerical analysis play a very important role.

Four of our favorite linear algebra methods are (1) sparse

elimination [10]; (2) minimal storage sparse elimination [41; (3)

preconditioned conjugate gradient methods (2]; and (4)

multi-grid (1]. These four methods have the following asymptotic

costs for the model problem:

10

MultiDlicati0ns Storage

(1) sparse elimination O(n3) O(n2 log n)

(2) minimal storage 2
sparse elimination 0(n3) O(n)

(3) preconditioned conjugate O(n2.5 log n) O(n2)
gradient method

(4) multi-grid O(n2) O(n2)

These methods have the following virtues:

(l)-(2): (a) Good, general codes available.
(b) Efficient for two-dimensional problems.

(3): (a) Generally applicable with promise of good codes.
(b) Efficient for two- and three-dimensional problems.
(c) Low storage requirement.

(4): (a) Asymptotically optimally efficient.

On the other hand, these methods have the followin& possible

shortcomings:

(1)-(2): (a) Inefficient in three dimensions.
(b) Large storage requirements, especially in three

dimensions.

(3): (a) In some cases, parameters need to be estimated.

(4): (a) Difficult to implement efficiently.
(b) Difficult to implement for general problems.

11

What can ye conclude from these asymptotic results? Methods

(2), (3), and (4) have storage proportional to the number of

unknowns. In theory, multi-grid looks like the clear vinner. In

practice, however, it is so difficult to implement and has such

complex logic and overhead that it may not be efficient on any

existing peripheral processor - maybe not even on one specially

designed.

Tb last but perhaps most powerful way to reduce time and

storage is analytic: the use of adaptive high-order finite

difference or finite element discretization techniques. Because the

techniques are high-order, for a given accuracy the discretization

involves few parameters and little storage and so can be solved

quickly. Because the techniques are adaptive, we can attain high

convergence rates for smooth and nonsmooth problems alike.

As an example, consider the use of piecewise bicubic

polynomials with the Rayleigh-Ritz-Galerkin method [9]. Such a

method requires c n2 + k nq , 2< q_ 4, k<<c multiplications, where

the first term corresponds to assembling the matrix and the second

term corresponds to solving it. The value of q depends on the

method used to solve the linear system. In general, for a given

fixed accuracy, the linear systems for high-order discretizations

are much smaller, and hence have more "information content" per

nonzero entry, than the linear systems for low-order

discretizations. But the computation per nonzero to assemble the

matrix is much higher. Thus, we may draw several conclusions:

12

1. Solving the linear system for a high-order approximation
is relatively easy.

2. 1/0 is reduced and is often unnecessary for high-order

methods.

3. The assembly times are relatively high.

Clearly we should focus on optimizing the assembly phase. The

first thing to investigate in the use of a peripheral processor is

how well the assembly phase can be implemented. What can be done

algorithmically to improve the assembly phase? Our studies with

Alan Weiser (12] indicate that it is advantageous to use smooth

tensor-product, piecewise-polynomial basis functions and to take

advantage of all possible symmetries. For example, we get the

following assembly costs per interior element:

Smoothness Multiplications

C1 (using only symmetry of matrix) 8102

C1 882

C2 558.

Moreover, smoothness has a beneficial effect on the solve

phase in terms of work and storage. The following table gives the

relative operation counts and storage for the Cholesky factorization

of the corresponding band matrix:

13

Relative Multiplication Relative
CStorae

C0 364.5 81

C1 32.0 16

C2 4.5 3

This shows that symmetries can play an important role in the

assembly phase. If possible, it is highly advantageous to map the

problem domain onto a union of rectangles and to use smooth

tensor-products of piecevise polynomials.

Unfortunately, actual computational experience for realistic

problem sizes giving engineering accuracy is not quite as clear-cut

as we would like. The adaptive high-order methods have a very large

overhead because of to their logical complexity. In practice we are

trading arithmetic operations and storage for logical complexity.

Moreover, it is not at clear whether we can effectively implement

these methods on a multi-processor system.

When it comes to turn-around time, we do not know whether it

is better to use a simple low-order method that involves a lot of

data but can be implemented very effectively on a multi-processor or

a sophisticated adaptive high-order method that involves little data

but might not be effectively implementable. We cannot yet answer

this fundamental question.

14

13n3.ucIs

[1) A. Brandt.
Multi-level adaptive solution to boundary value problems.
Mathematics At Comutation 31:333-390, 1977.

[2] R. Chandra.
ConiuireGradient Methods fr Partial Di Eaustion.
PhD thesis, Yale University, 1978.

[3] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman.
Minimal storage band elimination.
In D. J. Kuck, D. H. Lawrie, and A. H. Sameh, editors,

Proceedings f the Symposium on High Speed Comnuter Apd
Alorithm Oranization, pages 273-286. Academic Press, New
York, 1977.

[4] S. C. Eisenstat, M. R. Schultz, and A. R. Sherman.
Software for sparse Gaussian elimination with limited core

storage.
In Proceedins 'gf the Sarse Marix Meeting, pages 135-153.

SIAM, Philadelphia, 1978.

[51 G. Forsythe and C. Moler.
Computer Solution pf Linear Alfebraic Systems.
Prentice-Hall, 1967.

[6) M. J. Foster and H. T. Kung.
The design of special-purpose VLSI chips.
Computer 13:26-40, 1980.

(71 C. Mead and L. Convey.
Introduction t VLS;.._.Svstems.
Addison-Wesley, 1980.

(8] J. R. Perry.
Secondary Strage Methods frj Solving landed Linea Systems.
PhD thesis, Yale University, 1981.

(91 M. H. Schultz.
Splin Aalysis.
Prentice-Hall, 1973.

[101 A. R. Sherman.
O h efficient solution oL sarse systems oL linear And

PhD thesis, Yale University, 1975.

1,

1111 L 8. Varga.

Prestice-Rall. 1962.

1121 A. Veiser 8. C. isenutet. ad L.1I. Schults.
solving finite element equations to moderate accuracy.
SIM 17:908-929, 1900.

I

41)

